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A Zero-shot learning

® Zero-shot learning:
—> at test time can encounter an istance whose
corresponding label was not seen at training time
£ 4 - Xtest
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o /L setting occurs in domains with many possible labels



/) Zero-shot learning: Unseen labels

® To deal with labels that have no training data
> Instead of learning parameters associated with

each label yc )/
> Treat as problem of learning a single projection function

® Resulting function can then map input vectors to label space
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@ Zero-shot Learning: Cross-Modal Mapping

Manifold of known classes n

New test image
from unknown

® Socheretal. 2013
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A Cross-lingual mapping

® First generate monolingual word embeddings for each language

® Second, learn to map between embedding spaces of
different languages



A Multilingual word embeddings

® (Creates multilingual word embeddings

Shared vector space

® Multilingual word embeddings uses:
> Model transfer
> Recent: 1nitialize unsupervised machine translation



A Problem

* Learn cross-lingual mapping function

— that projects vectors from embedding space of one language to
another
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early work & assumptions

iImproving precision

reducing supervision
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Early work & assumptions

® Concepts have similar geometric arrangements 1n
vector spaces of different languages (Mikolov et al. 2013)
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Mikolov et al. 2013

Mapping function/translation matrix learned with least squares loss

M = argminy ||[MX — Yl||p + A||M]|

y = argmax

, cos(Mz, y)
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/) Improving accuracy

Impose orthogonality constraint on learned map
— Xing et al. 2015, Zhang et al 2016

Ranking loss to learn map
— Lazaridou et al. 2015

13



/) Reducing supervision

Our own work: teacher-student framework (Nakashole EMNLP
2017)
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(Artetxe et al., 2017) bootstrap approach
— Start with a small dictionary
— lteratively build it up while learning map function
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/) No supervision

Unsupervised training of mapping function (Barone 2016, Zhang et
al., 2017; Conneau et al., 2018)

— Adversarial training

— Discriminator: separate mapped vectors Mx from targets Y

— Generator (learned map): prevent discriminator from
succeeding
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/) Success Summary

With no supervision current methods obtain high accuracy
— However, there’s room for improvement
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/A Assumptions

Limitations tied to assumptions made by current methods
— A1. Maps are linear (linearity)
— A2. Embedding spaces are similar (isomorphism)
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A Assumption of Linearity

« SOTA methods learn linear maps

— Artexte et al. 2018, Conneau et al. 2018, ..., Nakashole 2017, ...
Mikolov et al. 2013

* Although assumed by SOTA & large body of work
— Unclear to what extent the assumption of linearity holds

 Non-linear methods have been proposed
— Currently not SOTA

— Trying to optimize multi-layer neural networks for this zero-shot
learning problem largely fails
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A Testing Linearity

To what extent does the assumption of linearity hold?
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A Testing Linearity

Assume underlying mapping function is non-linear

— but can be approximated by linear maps in small enough
neighborhoods

If the underlying map is linear
— local approximations should be identical or similar

If the underlying map is non-linear
— local approximations will vary across neighborhoods
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Neighborhoods in Word Vector Space

To perform linearity test, need to define neighborhood

— Pick an ‘anchor’ word, consider all nearby words (cos
sim>=0.5) to be in its neighborhood
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Neighborhoods: en-de

cos(xq, ;)
ro:multivitamins 1.0
xr1:.antibiotic 0.60
ro:disease 0.45
xr3:blowflies 0.33
x4 .dinosaur 0.24
xs:orchids 0.19
Trg.copenhagen 0.11
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A Neighborhood maps

* We consider three training settings:

1. Train a single map on one of the neighborhoods (1 Map)
2. Train a map for every neighborhood (N maps)
3. Train a global map (1 Map) : this is the typical setting
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4 Setting 1: train a single map (MX?)

Translate words from all neighborhoods using MX0

xro Similarity

Translation Accuracy

cos(xg, T;) M*o
ro:multivitamins 1.0 68.2
x1:antibiotic 0.60 67.3
To:.disease 0.45 59.2
x3:blowflies 0.33 28.4
x4:dinosaur 0.24 14.7
x5:orchids 0.19 19.3
xrg.copenhagen 0.11 31.2
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/) Setting 2: a map for every neighborhood (M¥i)

xo Similarity [Translation Accuracy

cos(xg, T;) \Y e \Y ke A
ro:multivitamins 1.0 68.2 68.2 0
x1:antibiotic 0.60 67.3 72.7 5.4 7
To:.disease 0.45 59.2 73.4 14.2 1
x3:blowflies 0.33 28.4 73.2 44.8 1
x4.dinosaur 0.24 14.77 77.1 62.4 T
x5 orchids 0.19 19.3 78.0 H&.7 T
xrg.copenhagen 0.11 31.2 67.4 36.2 1
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/) Testing Linearity Assumption

If the underlying map is linear
— local approximations should be identical or similar

If the underlying map is non-linear
— local approximations will vary across neighborhoods
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A Map Similarity

cos(My,My) =

tT(MlTMz)

\/tT(MlTMl)tT(MzTM2)

o Similarity ‘

cos(xg, T;) cos(IM*0 V[*i)

ro:multivitamins
x1:antibiotic
To:disease
x3:blowflies
x4:.dinosaur
x5:orchids

Trg.copenhagen

1.0
0.60
0.45
0.33
0.24
0.19
0.11

1.0
0.59
0.31
0.20
0.14
0.20
0.15
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/) Setting 3: train a single global map (M)

xo Similarity

Translation Accuracy

cos(xg, T;) M M*o M
ro:multivitamins 1.0 58.3 68.2 68.2
x1:antibiotic 0.60 61.1 67.3 72.7
ro:disease 0.45 69.3 59.2 73.4
x3:blowflies 0.33 71.4 28.4 73.2
x4.dinosaur 0.24 63.2 14.77 77.1
xs:orchids 0.19 73.7 19.3 78.0
xrg.copenhagen 0.11 38.5 31.2 67.4
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Translation accuracy
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A Linearity Assumption: Summary

Provided evidence that linearity assumption does not hold

Locally linear maps vary

— by an amount tightly correlated with distance between
neighborhoods on which they were trained
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J\ But SOTA achieves remarkable precision

 SOTA unsupervised, precision@1 ~80% (Conneau et al.
ICLR 2018)

— BUT only for closely related languages, e.g, EN-ES

« Distant languages”?
— Precision much lower, ~ 40% EN-RU, ~30% EN-ZH
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A Assumptions

Limitations tied to assumptions made by current methods
— A1. Maps are linear (linearity)
— A2. Embedding spaces are similar (isomorphism)
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/) close vs distant language translation

N

N
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A State-of-the-Art

en-ru en-zh en-de en-es en-fr
Artetxe et al . 2018 47.93 20.4 70.13 79.6 79.30
Conneau et al. 2018 37.30 30.90 71.30 79.10 78.10

« Datasets: FAIR MUSE lexicons

« b5k train/1.5k test
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A Proposed approach

To capture differences in embedding spaces
— learn neighborhood sensitive maps
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A Learn neighborhood sensitive maps

In principle can do this by learning a non-linear map
— Currently not SOTA

— Trying to optimize multi-layer neural networks for this zero-shot
learning problem largely fails
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A Jointly discover neighborhoods & translate

We propose to jointly discover neighborhoods
— while learning to translate
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A Reconstructive Neighborhood Discovery

« Discovered by learning a reconstructive dictionary of
neighborhoods

— Reconstruct word vector xusing a linear combination of K
neighborhoods.

— Dictionary that minimizes reconstruction error (Lee et al 2007)

D,V = argmin ||X — VD||5
D,V

X - = XD?!
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A Maps

Use neighborhood aware representation to learn maps

~linear

Y, = Wz r,

hi — 0'1(1']:7;W>
t; = UQ(ZEf’th)
:&?n:tz XhZ—F(lO—tz) X TF,

m k
L(9) = 32 3 max (0,7 + d(yi, 57)
i=1 j#q

d(yj7 @7{])) ;

43



en-ru en-zh en-de en-es en-1r
50.33 43.27 68.50 77.47 76.10
Artetxe et al . 2018 4'7.93 20.4 70.13 79.6 79.30
Conneau et al. 2018 37.30 30.90 71.30 79.10 78.10
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Rare Words
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A Rare vs frequent words: en-pt

Artetxe et al . 2018

en-pt
RARE MUSE
57.67 72.60
47.00 77.73
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Neighborhood interpretability

Neighborhood
51 134 162 7
drugs criminally chuanyao khoisan
zonisamide judicature chuanyan bantu
cocaine prosecutory zhiang sepedi
ritalin derogation thanong otjitherero
hospitalized restitutionary gqiangbing ndebeles
pheniprazine derogative pengpeng hereros
overdose jailable nguyan otjinene
disorientation extradition yuning shona
focusyn sodomy liheng hutu
alfaxalone crimes thanong witotoan
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Conclusion
|. Success on close languages
2. Distant languages still far behind
- assumptions responsible?
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