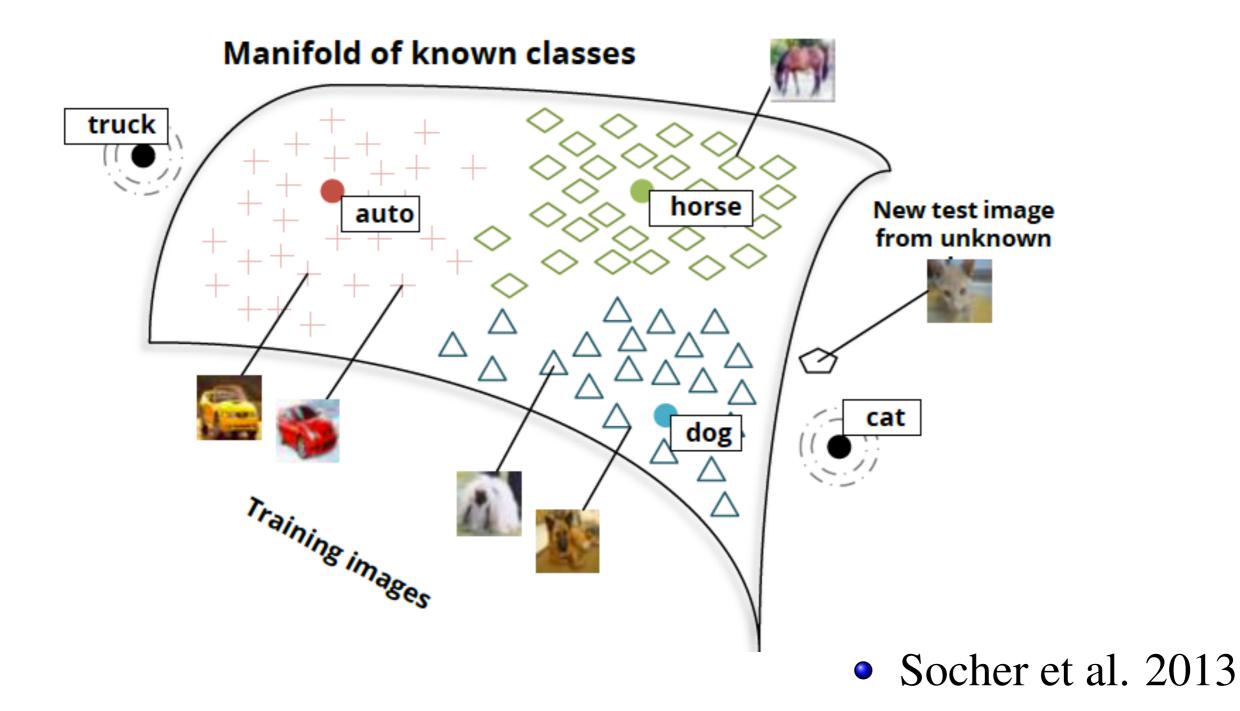
Zero-Shot Learning for Word Translation: Successes and Failures

Ndapa Nakashole, University of California, San Diego 05 June 2018

- Introduction
- Successes
- Limitations

- Zero-shot learning:
 - $\implies \text{ at test time can encounter an instance whose} \\ \text{ corresponding label was not seen at training time} \\ x_j \in \mathcal{X}_{test} \\ y_j \notin \mathcal{Y} \end{cases}$
- ZL setting occurs in domains with many possible labels

- To deal with labels that have no training data
 ▷ Instead of learning parameters associated with each label y∈ Y
 ▷ Treat as problem of learning a single projection function
- Resulting function can then map input vectors to label space

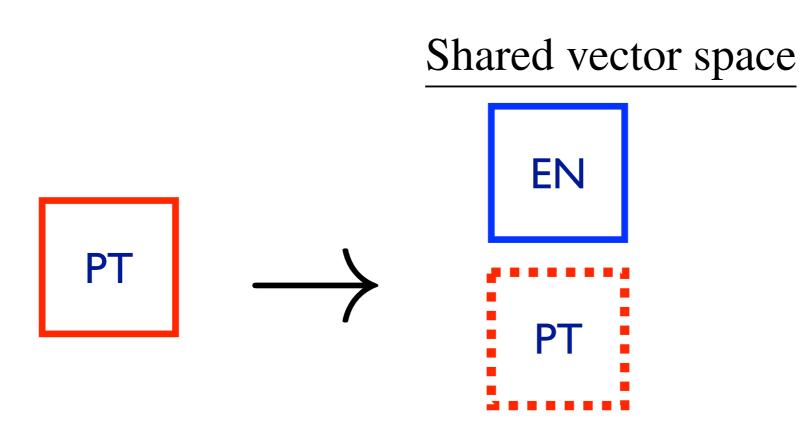


• First generate monolingual word embeddings for each language

• Second, learn to map between embedding spaces of different languages

$$\mathsf{PT} \longrightarrow \mathsf{EN}$$

• Creates multilingual word embeddings



- Multilingual word embeddings uses:
 - ⊳ Model transfer
 - ▷ Recent: initialize unsupervised machine translation

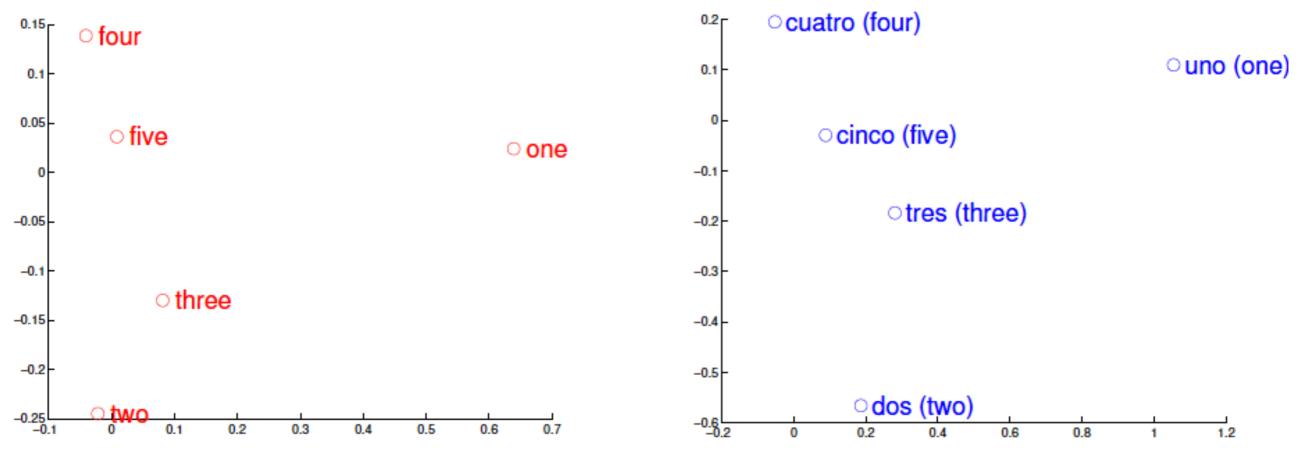
- Learn cross-lingual mapping function
 - that projects vectors from embedding space of one language to another

• early work & assumptions

improving precision



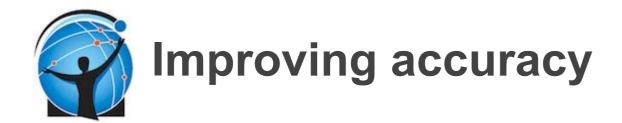
• Concepts have similar geometric arrangements in vector spaces of different languages (Mikolov et al. 2013)



- Mikolov et al. 2013
 - Mapping function/translation matrix learned with least squares loss

$$\hat{\mathbf{M}} = \operatorname{arg\,min}_{\mathbf{M}} ||\mathbf{M}\mathbf{X} - \mathbf{Y}||_{F} + \lambda ||\mathbf{M}||$$

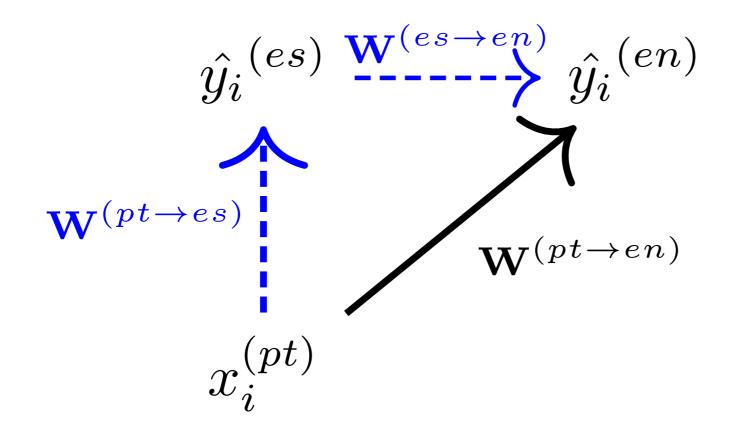
$$y = \arg \max_y \cos(\mathbf{M}x, y)$$



- Impose orthogonality constraint on learned map
 - Xing et al. 2015, Zhang et al 2016

- Ranking loss to learn map
 - Lazaridou et al. 2015

• Our own work: teacher-student framework (Nakashole EMNLP 2017)



- (Artetxe et al., 2017) bootstrap approach
 - Start with a small dictionary
 - Iteratively build it up while learning map function

- Unsupervised training of mapping function (Barone 2016, Zhang et al., 2017; Conneau et al., 2018)
 - Adversarial training
 - Discriminator: separate mapped vectors Mx from targets Y
 - Generator (learned map): prevent discriminator from succeeding

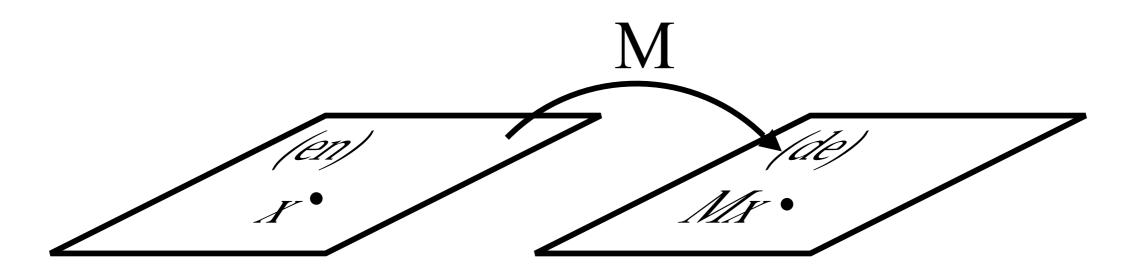
- With no supervision current methods obtain high accuracy
 - However, there's room for improvement

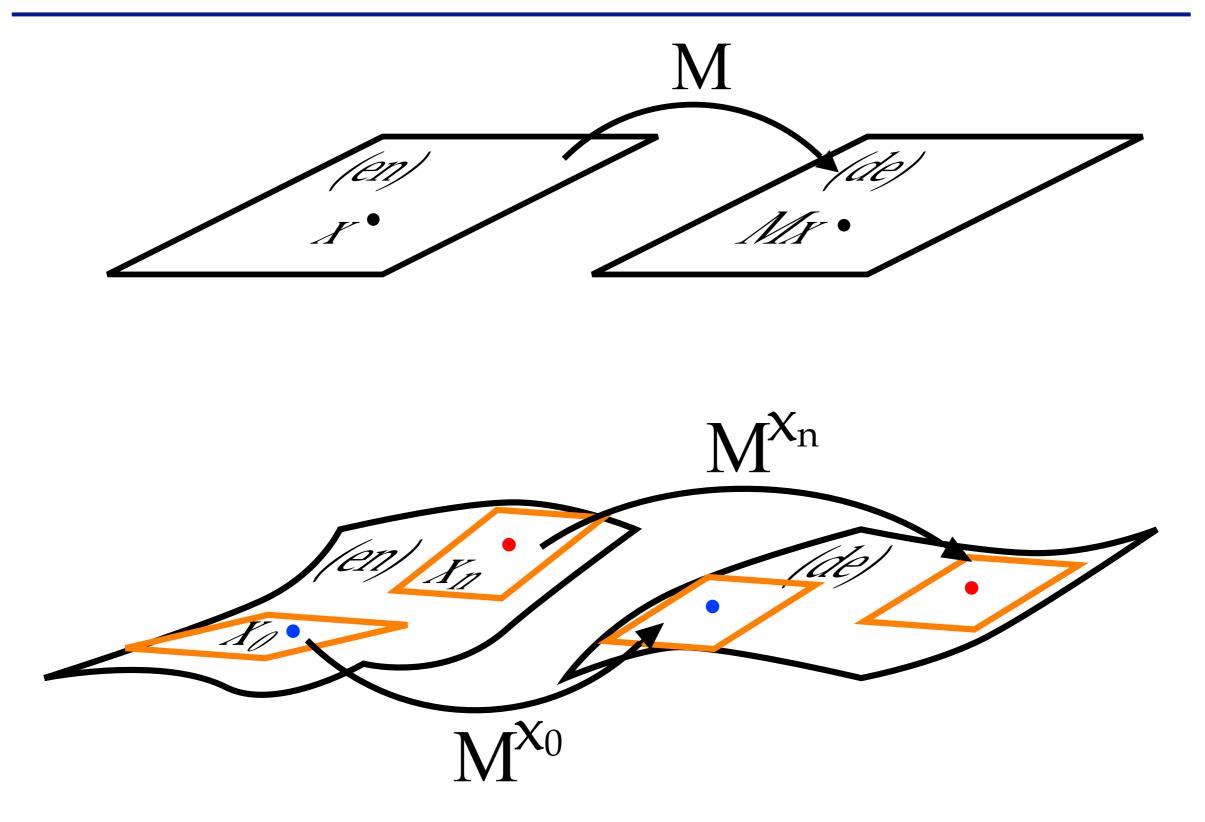
- Limitations tied to assumptions made by current methods
 - A1. Maps are linear (linearity)
 - A2. Embedding spaces are similar (isomorphism)

- SOTA methods learn linear maps
 - Artexte et al. 2018, Conneau et al. 2018, ..., Nakashole 2017, ...
 Mikolov et al. 2013
- Although assumed by SOTA & large body of work
 - Unclear to what extent the assumption of linearity holds
- Non-linear methods have been proposed
 - Currently not SOTA
 - Trying to optimize multi-layer neural networks for this zero-shot learning problem largely fails

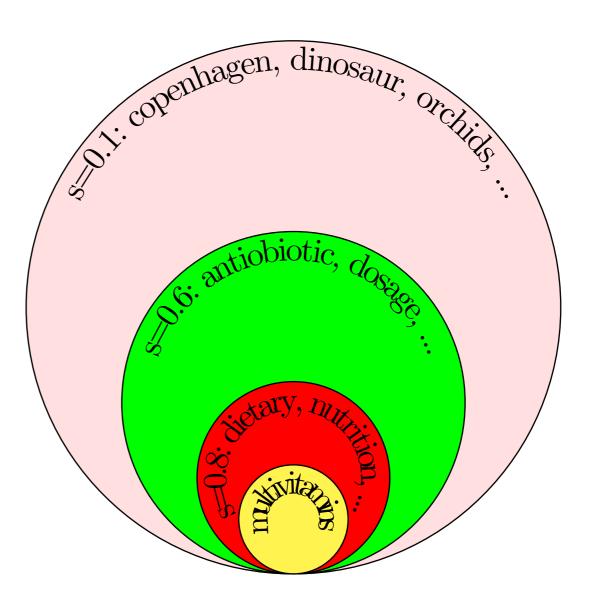
• To what extent does the assumption of linearity hold?

- Assume underlying mapping function is non-linear
 - but can be approximated by linear maps in small enough neighborhoods
- If the underlying map is linear
 - local approximations should be identical or similar
- If the underlying map is non-linear
 - local approximations will vary across neighborhoods





- To perform linearity test, need to define neighborhood
 - Pick an 'anchor' word, consider all nearby words (cos sim>=0.5) to be in its neighborhood



	$\cos(x_0, x_i)$
x_0 :multivitamins	1.0
x_1 :antibiotic	0.60
x_2 :disease	0.45
x_3 :blowflies	0.33
x_4 :dinosaur	0.24
x_5 :orchids	0.19
x_6 :copenhagen	0.11

- We consider three training settings:
 - 1. Train a single map on one of the neighborhoods (1 Map)
 - 2. Train a map for every neighborhood (N maps)
 - 3. Train a global map (1 Map) : this is the typical setting



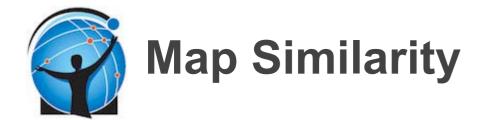
• Translate words from all neighborhoods using M^{X0}

	x_0 Similarity	Translation Accuracy	
	$\cos(x_0, x_i)$	$\mathbf{M}^{\mathbf{x_0}}$	
x_0 :multivitamins	1.0	68.2	
x_1 :antibiotic	0.60	67.3	
x_2 :disease	0.45	59.2	
x_3 :blowflies	0.33	28.4	
x_4 :dinosaur	0.24	14.7	
x_5 :orchids	0.19	19.3	
x_6 :copenhagen	0.11	31.2	

	x_0 Similarity	Translation Accuracy		
	$\cos(x_0, x_i)$	M^{x_0}	M^{x_i}	Δ
x_0 :multivitamins	1.0	68.2	68.2	0
x_1 :antibiotic	0.60	67.3	72.7	$5.4\uparrow$
x_2 :disease	0.45	59.2	73.4	$14.2\uparrow$
x_3 :blowflies	0.33	28.4	73.2	$44.8\uparrow$
x_4 :dinosaur	0.24	14.7	77.1	$62.4\uparrow$
x_5 :orchids	0.19	19.3	78.0	$58.7\uparrow$
x ₆ :copenhagen	0.11	31.2	67.4	$36.2\uparrow$

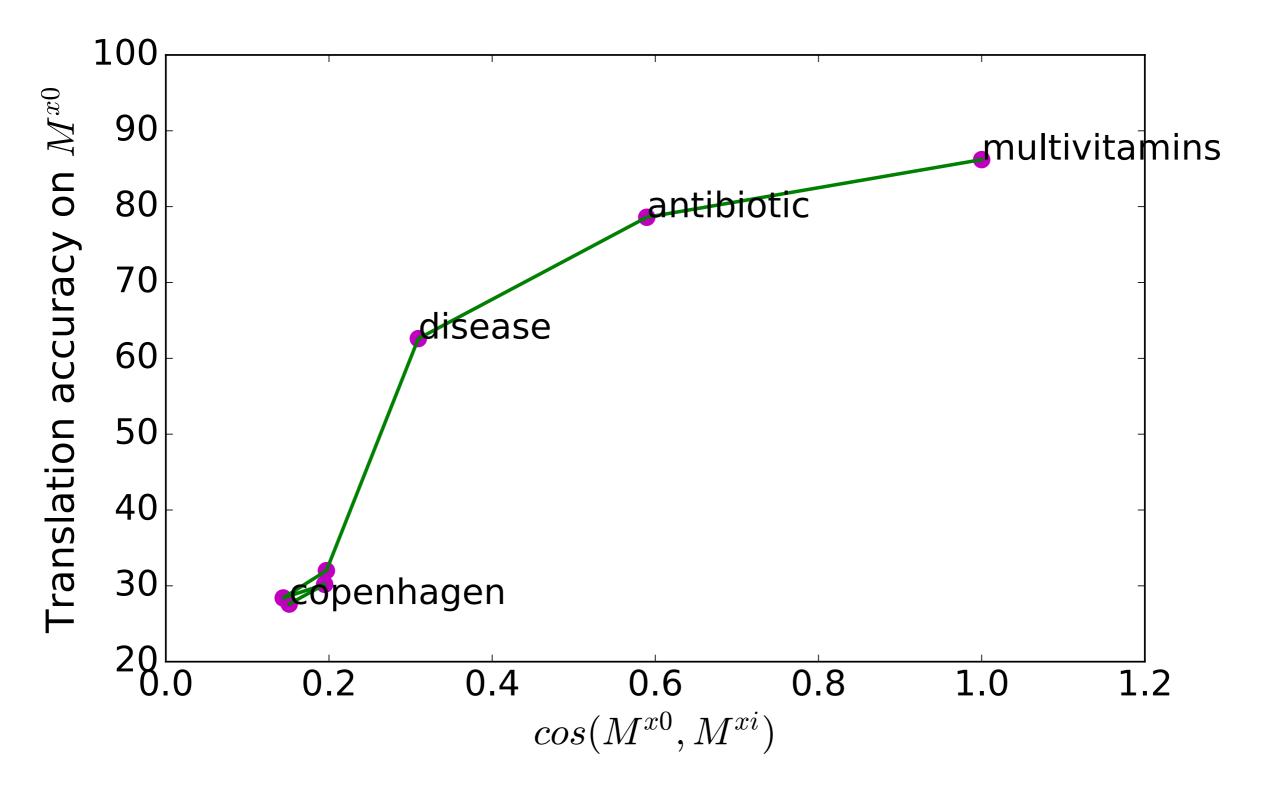
Testing Linearity Assumption

- If the underlying map is linear
 - local approximations should be identical or similar
- If the underlying map is non-linear
 - local approximations will vary across neighborhoods

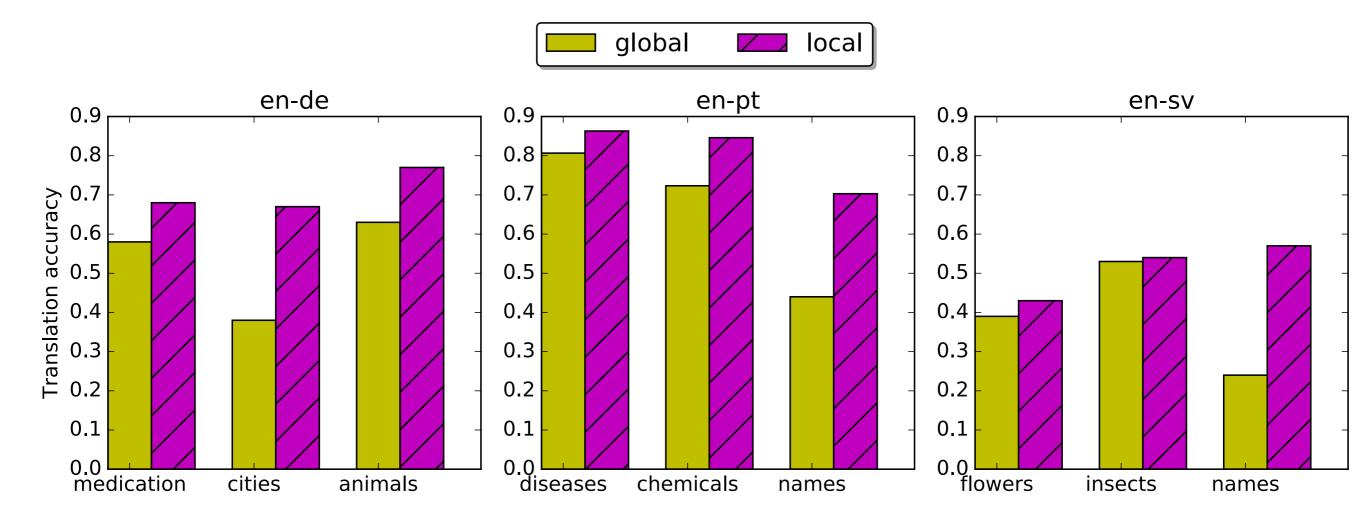


$$\cos(\mathbf{M_1}, \mathbf{M_2}) = \frac{tr(\mathbf{M_1}^T \mathbf{M_2})}{\sqrt{tr(\mathbf{M_1}^T \mathbf{M_1})tr(\mathbf{M_2}^T \mathbf{M_2})}}$$

	x_0 Similarity	
	$\cos(x_0, x_i)$	$\cos(\mathbf{M^{x_0}}, \mathbf{M^{x_i}})$
x_0 :multivitamins	1.0	1.0
x_1 :antibiotic	0.60	0.59
x_2 :disease	0.45	0.31
x_3 :blowflies	0.33	0.20
x_4 :dinosaur	0.24	0.14
x_5 :orchids	0.19	0.20
x_6 :copenhagen	0.11	0.15



	x_0 Similarity	Translation Accuracy		
	$\cos(x_0, x_i)$	M	M^{x_0}	M^{x_i}
x_0 :multivitamins	1.0	58.3	68.2	68.2
x_1 :antibiotic	0.60	61.1	67.3	72.7
x_2 :disease	0.45	69.3	59.2	73.4
x_3 :blowflies	0.33	71.4	28.4	73.2
x_4 :dinosaur	0.24	63.2	14.7	77.1
x_5 :orchids	0.19	73.7	19.3	78.0
x ₆ :copenhagen	0.11	38.5	31.2	67.4

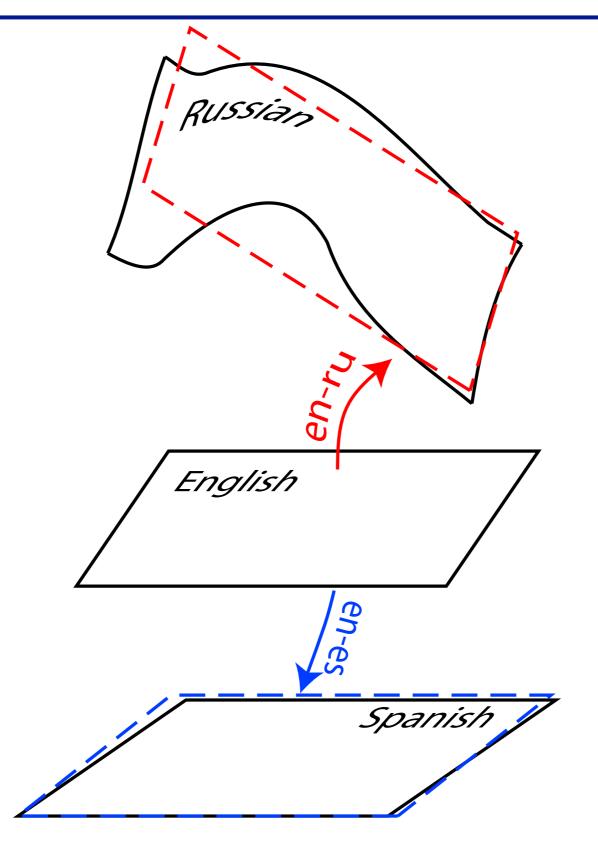


Linearity Assumption: Summary

- Provided evidence that linearity assumption does not hold
- Locally linear maps vary
 - by an amount tightly correlated with distance between neighborhoods on which they were trained

- SOTA unsupervised, precision@1 ~80% (Conneau et al. ICLR 2018)
 - BUT only for closely related languages, e.g, EN-ES
- Distant languages?
 - Precision much lower, ~ 40% EN-RU, ~30% EN-ZH

- Limitations tied to assumptions made by current methods
 - A1. Maps are linear (linearity)
 - A2. Embedding spaces are similar (isomorphism)



_	en-ru	en-zh	en-de	en-es	en-fr
Artetxe et al . 2018	47.93	20.4	70.13	79.6	79.30
Conneau et al. 2018	37.30	30.90	71.30	79.10	78.10

- Datasets: FAIR MUSE lexicons
- 5k train/1.5k test

- To capture differences in embedding spaces
 - learn neighborhood sensitive maps

Learn neighborhood sensitive maps

- In principle can do this by learning a non-linear map
 - Currently not SOTA
 - Trying to optimize multi-layer neural networks for this zero-shot learning problem largely fails

Jointly discover neighborhoods & translate

- We propose to jointly discover neighborhoods
 - while learning to translate

Reconstructive Neighborhood Discovery

- Discovered by learning a reconstructive dictionary of neighborhoods
 - Reconstruct word vector x using a linear combination of K neighborhoods.
 - Dictionary that minimizes reconstruction error (Lee et al 2007) $\mathbf{D}, \mathbf{V} = \operatorname*{arg\,min}_{\mathbf{D}, \mathbf{V}} ||\mathbf{X} - \mathbf{V}\mathbf{D}||_2^2$

$$\mathbf{X}_{\boldsymbol{\mathcal{F}}} = \mathbf{X}\mathbf{D}^T$$

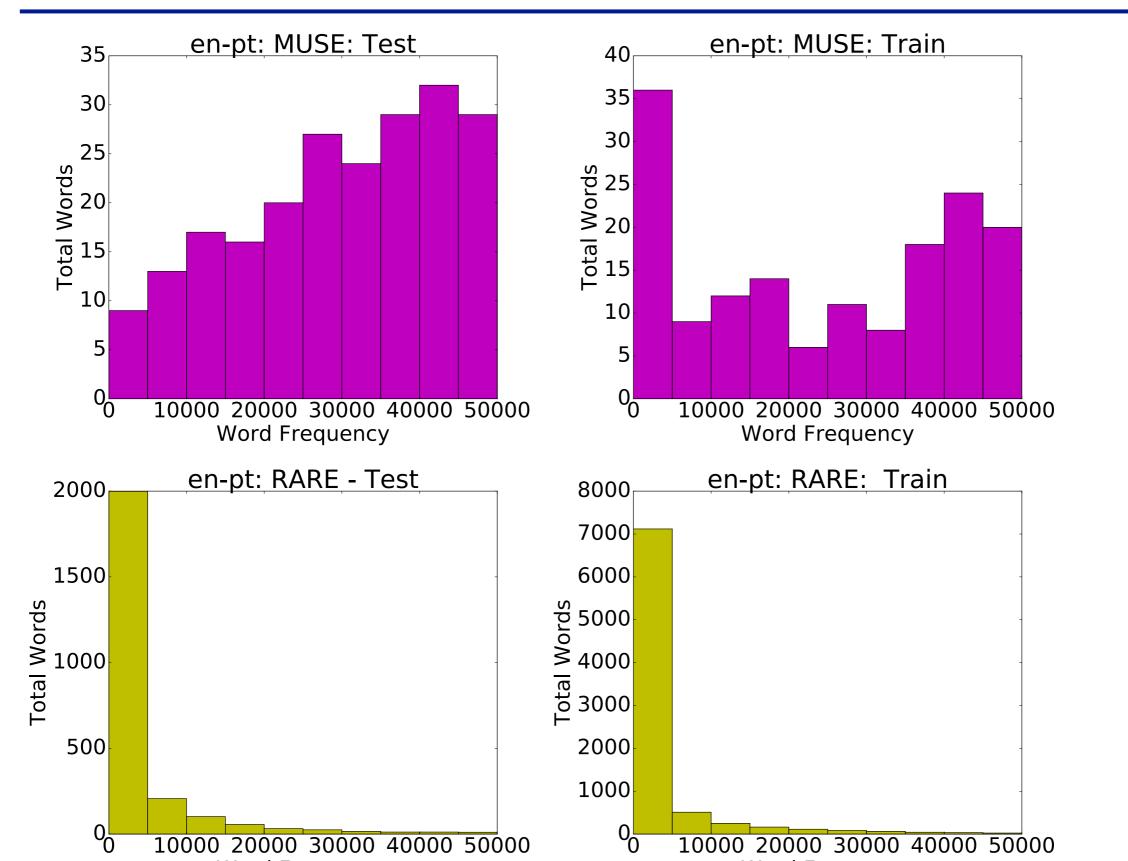
• Use neighborhood aware representation to learn maps

$$\hat{y}_i^{linear} = \mathbf{W} x_{\mathcal{F}_i}$$

$$h_i = \sigma_1(x_{\mathcal{F}_i} \mathbf{W})$$
$$t_i = \sigma_2(x_{\mathcal{F}_i} \mathbf{W}^{\mathbf{t}})$$
$$\hat{y}_i^{nn} = t_i \times h_i + (1.0 - t_i) \times x_{\mathcal{F}_i}$$

$$L(\theta) = \sum_{i=1}^{m} \sum_{j \neq i}^{k} \max\left(0, \gamma + d(y_i, \hat{y}_i^g) - d(y_j, \hat{y}_i^g)\right),$$

	en-ru	en-zh	en-de	en-es	en-fr
-	50.33	43.27	68.50	77.47	76.10
Artetxe et al . 2018	47.93	20.4	70.13	79.6	79.30
Conneau et al. 2018	37.30	30.90	71.30	79.10	78.10



	en-pt		
	RARE MUSI		
	57.67	72.60	
Artetxe et al. 2018	47.00	77.73	

Neighborhood				
51	134	162	7	
drugs	criminally	chuanyao	khoisan	
zonisamide	judicature	chuanyan	bantu	
cocaine	prosecutory	zhiang	sepedi	
ritalin	derogation	thanong	otjiherero	
hospitalized	restitutionary	qiangbing	ndebeles	
pheniprazine	derogative	pengpeng	hereros	
overdose	jailable	nguyan	otjinene	
disorientation	extradition	yuning	shona	
focusyn	sodomy	liheng	hutu	
alfaxalone	crimes	thanong	witotoan	

<u>Conclusion</u> I. Success on close languages 2. Distant languages still far behind - assumptions responsible?

